F = hGn

measurement leads to a radiation pressure backaction

P

Radiation pressure Force: FRp = %Qhﬁ — nth FRP — hGn

A

Force can be derived from a Hamiltonian: ﬁint = (hGn)x = hg()&l[f\l,(b]L T b)

) L ) . h
Hint _ hGQZprG a(b + b'l')  — ,’L‘pr(b + bt) .’,Uzpf — \/Qmﬂm
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N

At A Ao A At A A Note: Hamiltonian is singly QND
H = ha)oa a+ thbTb +hGa'ax Hamiltonian for photon number

One can derive the equations of motion for the operators (optics and mechanics)

Optical frequency shift & — Z[H, &] / h — l(a)c + G),(\f)&

- A _ T
Radiation pressure force Frp — l[ H — p] / h = hGa Ad

From Hamiltonian formulation one recovers the classical equation of motion (without the respective
damping terms)

H,, =hGx,,a'a(b" +b)

Zzp

g0 is the vacuum optomechanical g =(
: 0
coupling rate \ 2mg
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n At A Ao A At A A Note: Hamiltonian is singly QND
H = hwoa a+ thbTb +hGa'ax Hamiltonian for photon number

One can derive the equations of motion for the operators (optics and mechanics)

Optical frequency shift

Radiation pressure force

i — —

From Hamiltonian formulation one recovers the classical equation of motion (without the respective
damping terms)

g0 is the vacuum optomechanical
coupling rate
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Sout(t)

g
AV o R

x(t)

Linearization around the driven cavity

=>
|

Quantum theory of optomechanical cooling:

|. Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL 99, 093901 (2007)
J. Dobrindt, Wilson-Rae, Kippenberg, PRL, 101, 263602 (2008)

F. Marquardt, Chen, Clerk, Girvin, PRL 99, 093902 (2007)
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Sout(t)

g
AV o R

x(t)

Linearization around the driven cavity

Quantum theory of optomechanical cooling:

|. Wilson-Rae, Nooshi, Zwerger, Kippenberg, PRL 99, 093901 (2007)
J. Dobrindt, Wilson-Rae, Kippenberg, PRL, 101, 263602 (2008)

F. Marquardt, Chen, Clerk, Girvin, PRL 99, 093902 (2007)
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x(t)
H = hASA 56 + hQum b 6b + hGaypeal(da + 6a7)(0b + 6b')

Resolved sideband regime:A = —),
Hine = hGaypra(oboat + obToa)

{2

Hipe = h7(5z’35af + 6b'6a)

QC — 29() Np

Cavity optomechanics

Corresponds to state swabpping between optical and mechanical mode



x(t)
H = hASA 56 + hQum b 6b + hGaypeal(da + 6a7)(0b + 6b')

Resolved sideband regime:A = —),
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Corresponds to state swabpping between optical and mechanical mode



Linearized equations of motion

(iA — g)(sap 4 igoVTroay (b 4+ bT) 4 /Kb (t)

F m
2

(_iﬂm )b + ZgO V Necav (5& o & 5&T) T ¥ Fm(‘}’gin (t)

Solutions to the coupled mode equations

Key approximation: w = Q,,, k> 1"y,

Wilson-Rae, |., Nooshi, N., Zwerger, W. & Kippenberg, T. Theory of Ground State Cooling of a 0 Mechanical Oscillator Using Dynamical Backaction. Physical
Review Letters 99, doi:10.1103 /PhysRevLett.99.093901 (2007).

Gardiner, C. & Collett, M. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phygisaty BisiaverAnics
31, 3761-3774, (1985).




Solutions to the coupled mode equations

Key approximation: w = Q, k > 'y,

Wilson-Rae, |., Nooshi, N., Zwerger, W. & Kippenberg, T. Theory of Ground State Cooling of a 0 Mechanical Oscillator Using Dynamical Backaction. Physical

Review Letters 99, doi:10.1103 /PhysRevLett.99.093901 (2007).
Gardiner, C. & Collett, M. Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phygigaty BséiieerAnics

31, 3761-3774, (1985).



A

i 4
A

W1, — Weav

Liniearize: a = o+ da
Keep terms at least order of o and employ RWA

Ly =Xl ﬁint ~ —hgov/MNcav (IA)(SCAL]L -+ BT(S&)
Coherent exchange of quanta, cooling

A = +Qun Hint & —hgo/Ticay (bTdaT + bda)
Two-mode squeezing, amplification

A =0 Hing = —hgov/Ticay (da + da) (b + bh)
Sensitive readout of mechanical motion

Marquardt et al. Phys. Rev. Lett. 2007
Wilson Rae, Zwerger, Kippenberg Phys. Rev. Lett. 2007

Mode Density (a.u.)

>

Mode Density (a.u.)

A

—hAG G + Qbbb — hgoa'a(b

i

Mechanical Mode
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A

i 4
A

W1, — Weav

Liniearize: a = o+ da
Keep terms at least order of o and employ RWA

A — _Qm
Coherent exchange of quanta, cooling

Two-mode squeezing, amplification

A =0
Sensitive readout of mechanical motion

Marquardt et al. Phys. Rev. Lett. 2007
Wilson Rae, Zwerger, Kippenberg Phys. Rev. Lett. 2007

Mode Density (a.u.)

Mode Density (a.u.)

>

—hAGTa + hQub'h — hgoa'a(b

i

Mechanical Mode
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Recall: Coupling between system and bath
Hy = / dolollh, and Hum— / dwg(w) (@bl + atby).

Time-evolution of the operators in the Heisenberg picture gives a dissipation term and a
fluctuation term: o |
a 1., -~ K, .
E = ﬁ[ 7Hsys] — 50, —+ \/Ea,in.
For the optomechanical Hamiltonian, H = hw.(1 — %)&T& + 1, bTh, we get the following

equations of motion:

da C 7 7 .
ﬁ = —iwca + i%aizpf(bT +b)a - g& + V(@i + ae™t),
db I

Cavity optomechanics



Recall: Coupling between system and bath
Hy = / dokollh, and Hup— / dwg(w) (@bl + atby).

Time-evolution of the operators in the Heisenberg picture gives a dissipation term and a
fluctuation term: 5 |
a 1., -~ K, .
% — ﬁ[a, Hsys] - 501 —l'_ \/Eain.

For the optomechanical Hamiltonian, H = hwe(1 — %)&‘L& — hﬂmm, we get the following
equations of motion:
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Quantum Langevin equations

We transfer to a rotating frame, @ — ae’“~'. We consider the case when the cavity is
resonantly driven, i.e. wy, = w.. Next we assume that the fields are strong, so they can be
represented as a sum of some mean value and small fluctuations:

a4 — a4+ oa and ZA)—>B+(53
The interaction Hamiltonian ﬁmt = h+%° xzpf(b + b)a‘ta IS thus /inearized:
a'a = (a* +6a")(a + d6a) — a(da’ + da)

Redefining oa as a, we get linearised quantum Langevin equations:

d& .We 7 7\ A K . A
d_ — Zfﬂfzpf(bf + b)a == 5(1 -+ \/ECLin,
d[; £\ UJC -

e Qm — T nl mvin-
g7 i b+7Loz( a—+a') - VT b

Cavity optomechanics




We transfer to a rotating frame, @ — ae'“~'. We consider the case when the cavity is
resonantly driven, i.e. w;, = w.. Next we assume that the fields are strong, so they can be
represented as a sum of some mean value and small fluctuations:

6 — a+da and b— B+ 6b.

The interaction Hamiltonian ﬁim = h%xzpf(gjf + B)&T& Is thus /inearized:

Redefining 0a as a, we get linearised quantum Langevin equations:
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Next we consider the fluctuations in amplitude and phase quadratures:

A A

X=a4+a and Y=a-a'

. The Langevin equations for the optical field can be expressed as

dX IV A

RS S

i~ 2t VE

di\/ 3 wC e A K} A A
E = QZCBprTa(b + bT) = §Y T \/EYin

Position of the mechanical oscillator is imprinted on the phase of the optical field = We
can infer position by using of homodyne detection.
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Next we consider the fluctuations in amplitude and phase quadratures:

. The Langevin equations for the optical field can be expressed as

Position of the mechanical oscillator is imprinted on the phase of the optical field = We

can infer position by using of homodyne detection.
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The input-output relation for fields also applies to the quadratures:

A

é\I/out — _&in 53 \/E& — Yout = —Yin + \/EY

A

Taking the Fourier transform Y (w) = [*°_ ™'Y (¢)dt, and defining § = xzpf(l;‘L +b), we have

— 00

—iwY (w) = 2i—ad(w) — §Y(w) + ViV (w).

After substitution, we assume so-called bad-cavity limit ~ > w and derive the output phase
quadrature:

3 3 ,C_ch 8 A
Yout(w) = —Yin(w) + 1 T \/;q(w).
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The input-output relation for fields also applies to the quadratures:

out = —in T \/Ea

A

Taking the Fourier transform Y (w) = [*°_ ™'Y (¢)dt, and defining § = szpf(gt +b), we have

— 00

After substitution, we assume so-called bad-cavity limit ~ > w and derive the output phase
quadrature:
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We can find spectral densities either by definition or Wiener-Khinchin theorem:

|
Sgg(w) = lim —(VHw)¥r(w))
A A w A A
= [are (P T O) = [ ded (T () V()
o0
Spectral density of the output noise is given by
8w?
SYA'outhout (UJ) — \1,-/ = HZLQ Sqq(w)
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We can find spectral densities either by definition or Wiener-Khinchin theorem:

B / dTe_’wT<?T(T)Y(O)> = /: dw' (YT (—w)Y (@)

Spectral density of the output noise is given by
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The weakest signal S;." can be measured when signal-to-noise ratio is equal to 1:

SZ?PP:( K L2 )SA :

q 8w§&2 YinYin

Force acting on the mechanical oscillator is F' = 8ﬁ1/8c’j. Assuming X = 0,

FovVansx — o [Shex,
L kL

8 (e

2
— Sﬁﬁ(w) - E( L &) SXinXin(w)

From these two expressions, it can be seen that

L mmp 32 X ey
S FF (w) Sflﬁ = I SYinYinSXinXin o '
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The weakest signal S;." can be measured when signal-to-noise ratio is equal to 1:

Force acting on the mechanical oscillator is F' = 8FI/8(j. Assuming X = 0,

From these two expressions, it can be seen that

o 1mp _ 2¢r. L v
S FF(w) Sﬁﬁ h SYinYinSXinXin '
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We write a second order differential equation for position:

We _

= —Qz ail — 21— i3 erzpr qu V Fmé\in-

Taking the Fourier transform as g(w) = [0 e"“"{(t)dt, we get:

il

(_']\(w) — X(w) _szaxzpr + v I Qm ;
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We write a second order differential equation for position:

w — A
C lezpr qu V I‘mqin-

= —qu 21—

Taking the Fourier transform .
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Saq(@) = 20X (W)|? | Saman, + 4 - 3
N ——
Ceff

Saa(w) = 2T |x(w)[*(nen + Cesi + 1)
Saq(—w) = 2T |x(w)|*(nen + Cegr)

Asymmetric noise spectral density — In total disagreement with classical results!
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Asymmetric noise spectral density — In total disagreement with classical results!
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In this lecture, you have seen:

* The physical origin of the optomechanical coupling
 Hamiltonian of an optomechanical system

* (Optomechanical equations of motion

» Spectrum of position fluctuations
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